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Introduction and Summary

Sandia is developing “commodity”

pattern recognition methods which

handle data sets that standard methods

cannot.

These commodity methods:

• Accept data as is, and in situ.

• Are robust to errors in attributes

and labels.

• Scale to terabyte data.

• Are crucial to Stockpile

Stewardship post-processing.

• Are broadly applicable, in Sandia

and out. Bolt Failure Detection in ASC Data
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Pattern Recognition Overview

Also known as: supervised machine learning,

statistical inference, data mining.

• Input: “ground truth” data.

– Samples, with attributes, and labels.

– Example ASC context:

∗ Samples: nodes, elements.

∗ Attributes: variable values.

∗ Labels: breach, bolt failure,

“interesting”.

• Apply suitable method:

decision trees, neural nets, SVMs.

• Output:

rules for labeling new, unlabeled data.

Equivalently:

a partitioning of attribute space.
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Pattern Recognition for ASC
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ASC Data is Daunting For Pattern Recognition

• Modern scientific data is:

deeply skewed, ill-suited, noisy,

and wrong.

• ASC data is all that and more:

– Optimal for simulation,

not for feature detection.

– Highly redundant.

– Terascale and partitioned.

– “Interesting” is often the most

useful label.

– Unrelenting. Simulation variables at every node in the

mesh are processed by pattern recognition.
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What to Do?

Give up on the craftsman model of pattern recognition.

Sandia has developed a

commodity model:

• Accepts data as it is.

• No user tuning required.

• Robust in the face of noise.

How? Some guiding principles:

1. Use decision trees over other

methods.

2. Use ensembles of decision trees.

3. Embrace redundancy.

4. Emphasize screening.

1 was mildly controversial;

2 and 3 reverse basic pattern recog-

nition assumptions.
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SMOTE for Skew Populations

• Synthetic Minority Oversampling

TEchnique[5].

• Oversample the minority

population, but . . .

. . . simple oversampling induces

pathologies.

So: add synthetic samples.

• Method:

– Pick minority sample.

– Pick a nearby neighbor.

– Add new minority sample at a

random point between them.

– Repeat.

Minority class overwhelmed.

Minority class filled out by SMOTE.
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Ensembles: Democracy Over Meritocracy

Traditional: Use 100% of training

data to build a sage.

Ensembles: Use randomized 100% of

training data to build an expert.

Repeat to build many experts.

Vote them.

Sandia: Use a semi-random 1% of the

training data to build a “bozo”.

Repeat to build very many bozos.

Vote them.

The experts beat the sage[2].

The bozos beat the experts[6].

How?

Averaging reduces measurement error.

Sage sees all the data.

Each expert sees 2/3rds of the data.

Each bozo sees a tiny fraction.
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Ensembles of Bozos for Distributed Data

• Build separate ensembles on

distributed data.

• Use “improvement voting”[6].

– e(b) is estimate of error rate of b

bozos.

– For (b+1)’st training set:

∗ Accept all misclassified

samples.

∗ Accept correct samples with

Prob = e(b)/(1 − e(b))

• Speed: O(f × b × n × log n); bozos

can be faster than sage, as well!

Bozos extracted in parallel.
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Conclusion: Commodity Fixes for Data Challenges

Problem Addressed by

Partitioned, terabyte data ensembles of bozos

deeply skewed, SMOTE

ill-suited, decision trees, screening

noisy, decision trees, ensembles, screening

and wrong ensembles, redundancy, diversity

• General purpose methods (principles, algorithms, and code) to

handle data sets that overwhelm standard methods.

• Broadly applicable; already in use on intelligence applications.

• Shared within Sandia via the AVATAR Tools package, more broadly

via the open source OpenDT[1], and through frequent publication[9].
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Background Slides To Follow. . .
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Decision Trees Over Other Methods

• “No Free Lunch”[8] says the method

doesn’t matter . . .

but only true for clean data!

• Most methods require a attribute

distance metric . . .

so attribute normalization matters.

• Decision trees don’t need distance

metric.

– Use ordinal relations only.

– Attributes need not be normalized.

– Also, immune to noise attributes.

• With ensembles, no need to prune[6].

?

Unknown assigned differently . . .

?

. . . depending on scaling
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Decision Trees and Distance Metrics

• How to partition attribute space?

• For the current population:

– Consider each attribute

separately.

– Consider each threshold for

that attribute.

– Pick attribute and threshold

which “best decreases

impurity”.

– Use them to partition the data

into two child data sets.

Repeat with each child.

• Best attribute and threshold is

independent of scaling.

• Irrelevant attributes ignored in the

presence of relevant attributes.
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Why Do Ensembles Work? (A)

• A statistical model is a noisy model of

reality.

• Bias error:

Model too simple, underfits.

• Variance error:

Model too complex, overfits.

• Bias/variance is a trade-off.

• Ensembles:

– Use methods with low bias. . .

but high variance . . .

and average to reduce variance!

• Out-of-bag validation picks ensemble

size[3].

• Result:

low bias error and low variance error.

No hand tuning needed.
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Why Do Ensembles Work? (B)

One key is diversity [7].

Imagine: three classes, each bozo only 10% accurate, and when wrong, chooses

at random among the three classes.

Then the horde of bozos is perfectly, 100% accurate!

One group of unconfused bozos amid the foggy error.

Note: diverse, random error is difficult to achieve[4].
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Next: Inconsistent Class Statistics

• ASC data is partitioned and varies in class statistics.

– Grow ensembles of bozos on each partition.

– Each ensemble generates a vote.

– Each vote is weighted by priors:

p(wi|x) = percentage of ensembles that vote for wi given x.

P (wi) = percentage of ensembles which have seen class wi.

Classify as wm : argmaxn(
p(wi|x)

P (wi)
)
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Impact: Text, Graphs, and Intelligence Analysis

• Intelligence data is often relationship

data, and graphs encode relationships.

• Text pattern recognition:

– Why? To auto-populate graphs.

– “NER” is phrase classification.

– Significant improvement on contest

data.

• Graph pattern recognition:

– Classify nodes, edges.

– Find missing links, subgraphs.

– Tensors for multilink analysis[10].

• Also, ensembles ease data sharing.
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